World Science Festival: Beautiful Minds: The Enigma of Genius

Albert Einstein uncovered the importance of glial cells.

Well, his brain did.

When Marian Diamond, a scientist at University of California, Berkeley, looked at samples of Einstein’s brain tissue in the 1980s, she found that he had twice as many astrocytes—a type of glial cell—than usual. He also had more oligodendrocytes—another type of glial cell—especially in the area of the brain involved in complex thinking and imagery.

Clearly, glia are more than just the glue holding the brain together and supporting neurons, as scientists thought them to be for decades.

R. Douglas Fields, a senior investigator at the National Institutes of Health and author of The Other Brain, explained the role of glia in the brain—and in genius—at the World Science Festival event “Beautiful Minds: The Enigma of Genius.” He was joined by scientists Dean Keith Simonton, University of California, Davis, and Rex Jung, University of New Mexico; mathematician Marcus du Sautoy, Oxford; director, designer, and MacArthur Genius fellow Julie Taymor; prolific composer Philip Glass; and moderator Brian Greene.

As Fields went on to explain, “The search for genius led to a fundamental reexamination of how the brain works.” Previously, scientists had held to the neuron doctrine, the assumption that all information processing and communication in the brain occurred through neural synaptic connections. But only 15 percent of brain cells are neurons—what about the other 85 percent?

It was easy for researchers to spot the electric connections between neurons. But because glia do not communicate electrically, their connections were missed until 1990, when researchers first saw astrocytes communicating through calcium channels in response to neurons. These glia sense and respond to neural activity and can strengthen or weaken synaptic connections, connecting non-electrically in a network that forms a structure over the neural structure. Oligodendrocytes can control the speed of synaptic transmission.

Genius is associated with structural differences in the brain, as well. As Jung said, highly creative people usually have less white-matter integrity and less brain tissue, especially in the frontal lobes. This could be disinhibiting, causing a downregulation of the decision-making, judging center of the brain. Taymor might have some of her best ideas from early-morning sleep because that is a time when the frontal lobes are less active. Some of these areas are the same as those impacted by schizophrenia and bipolar disorder; a newly identified genetic variant suggests an overlap between creativity and mental illness, but a connection between the two is not inevitable.

Other structural differences can be found in people with superior skills, said Fields. Musicians, for example, have a larger temporal lobe, which is involved in auditory perception, and a larger number of connections across the corpus collosum, the bundle of fibers connecting the brain’s two hemispheres. The question remains as to whether these changes come from experience and learning or if a person with such structural differences are better able to excel.

So if geniuses have more glia and noticeable structural differences, is genius born or made?

According to Simonton, genius-associated characteristics—like energy level and openness to new experience—are largely inherited. Still, environment can override inheritance.

Our brains develop from back to front, said Fields, with the prefrontal cortex the last area to fully myelinate, which occurs in our 20s—glia can make myelin, the insulation around the axon of a neuron that increases the speed of neural communication. Moreover, brain connections develop after we are born, allowing us to succeed in the environment into which we are born.

But as Jung said, our brains are not fully formed by our 20s. White matter continues to develop into our 40s; a recent study showed the teaching juggling to healthy adults showed that learning the new skill caused white matter changes.

Clearly, there is much to be discovered about what causes genius. But genius itself was beautifully defined by Glass: A genius changes the language of a field—like painting, science, mathematics, music, and theater—and suddenly everything is different.

–Johanna Goldberg

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.

%d bloggers like this: